Glucose Induces Mouse β-Cell Proliferation via IRS2, MTOR, and Cyclin D2 but Not the Insulin Receptor
نویسندگان
چکیده
An important goal in diabetes research is to understand the processes that trigger endogenous β-cell proliferation. Hyperglycemia induces β-cell replication, but the mechanism remains debated. A prime candidate is insulin, which acts locally through the insulin receptor. Having previously developed an in vivo mouse hyperglycemia model, we tested whether glucose induces β-cell proliferation through insulin signaling. By using mice lacking insulin signaling intermediate insulin receptor substrate 2 (IRS2), we confirmed that hyperglycemia-induced β-cell proliferation requires IRS2 both in vivo and ex vivo. Of note, insulin receptor activation was not required for glucose-induced proliferation, and insulin itself was not sufficient to drive replication. Glucose and insulin caused similar acute signaling in mouse islets, but chronic signaling differed markedly, with mammalian target of rapamycin (MTOR) and extracellular signal-related kinase (ERK) activation by glucose and AKT activation by insulin. MTOR but not ERK activation was required for glucose-induced proliferation. Cyclin D2 was necessary for glucose-induced β-cell proliferation. Cyclin D2 expression was reduced when either IRS2 or MTOR signaling was lost, and restoring cyclin D2 expression rescued the proliferation defect. Human islets shared many of these regulatory pathways. Taken together, these results support a model in which IRS2, MTOR, and cyclin D2, but not the insulin receptor, mediate glucose-induced proliferation.
منابع مشابه
PKCζ Is Essential for Pancreatic β-Cell Replication During Insulin Resistance by Regulating mTOR and Cyclin-D2
Adaptive β-cell replication occurs in response to increased metabolic demand during insulin resistance. The intracellular mediators of this compensatory response are poorly defined and their identification could provide significant targets for β-cell regeneration therapies. Here we show that glucose and insulin in vitro and insulin resistance in vivo activate protein kinase C ζ (PKCζ) in pancre...
متن کاملActivation of Protein Kinase C-ζ in Pancreatic β-Cells In Vivo Improves Glucose Tolerance and Induces β-Cell Expansion via mTOR Activation
OBJECTIVE PKC-ζ activation is a key signaling event for growth factor-induced β-cell replication in vitro. However, the effect of direct PKC-ζ activation in the β-cell in vivo is unknown. In this study, we examined the effects of PKC-ζ activation in β-cell expansion and function in vivo in mice and the mechanisms associated with these effects. RESEARCH DESIGN AND METHODS We characterized gluc...
متن کاملGene Silencing of Phogrin Unveils Its Essential Role in Glucose-Responsive Pancreatic β-Cell Growth
OBJECTIVE Phogrin and IA-2, autoantigens in insulin-dependent diabetes, have been shown to be involved in insulin secretion in pancreatic beta-cells; however, implications at a molecular level are confusing from experiment to experiment. We analyzed biological functions of phogrin in beta-cells by an RNA interference technique. RESEARCH DESIGN AND METHODS Adenovirus-mediated expression of sho...
متن کاملEpidermal Growth Factor Receptor Signaling Promotes Pancreatic β-Cell Proliferation in Response to Nutrient Excess in Rats Through mTOR and FOXM1
The cellular and molecular mechanisms underpinning the compensatory increase in β-cell mass in response to insulin resistance are essentially unknown. We previously reported that a 72-h coinfusion of glucose and Intralipid (GLU+IL) induces insulin resistance and a marked increase in β-cell proliferation in 6-month-old, but not in 2-month-old, Wistar rats. The aim of the current study was to ide...
متن کاملMiR-570 inhibits cell proliferation and glucose metabolism by targeting IRS1 and IRS2 in human chronic myelogenous leukemia
Objective(s): Chronic myelogenous leukemia (CML) is a chronic myeloproliferative disorder characterized by the accumulation of myeloid cells with a chromosomal translocation known as the Philadelphia chromosome. In this study, we investigated the roles of miR-570 in CML development. Materials and Methods: Expression of miR-570 in CML samples and cell lines was determined by qRT-PCR. Glucose upt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 65 شماره
صفحات -
تاریخ انتشار 2016